Albert Einstein và thuyết tương đối Albert Einstein là một trong số rất ít nhân vật trong lịch sử, mà ngay khi còn sống đã trở thành một nhân vật huyền thoại. Tư tưởng của ông càng bí hiểm, người đời càng muốn hiểu, và tư tưởng chừng như tiếng nói của ông từ đỉnh núi Olympia vọng xuống trần gian. Bertrand Russel đã nhận xét rất đúng: “Ai cũng biết Einstein đã làm được những chuyện kỳ lạ, nhưng rất ít người hiểu đó là chuyện gì”. Cứ tạm cho rằng, mặc dầu không đúng hẳn, thế giới này chỉ có chừng một tá người hiểu trọn vẹn lý thuyết của Einstein về vũ trụ, thì sự kiện này đã thách thức hàng ngàn nếu không nói là hàng triệu người quyết tâm cố tìm hiểu xem nhà toán học phù thủy đó đã nói những gì. Einstein khó hiểu vì phạm vi tư tưởng của ông vô cùng rộng lớn và phức tạp. T.E. Bridges đã nhắc đến một nhà khoa họcAnh, từng viết rằng: “Học thuyết của Einstein kết hợp sự kiện vật lý với sự kiện toán học và chỉ có thể giải thích bằng toán học. Muốn hiểu học thuyết của Einstein không thể không có một trình độ toán học rất cao”. George W. Gray cũng nói tương tự: “Einstein trình bày thuyết Tương đối bằng ngôn ngữ toán học, vì vậy rất khó trình bày thuyết này bằng thứ ngôn ngữ nào khác. Nếu trình bày thuyết Tương đối bằng ngôn ngữ thông thường thì chẳng khác gì dùng một cây kèn saxophone để dạo khúc hòa tấu số 5 của Beethoven”. Tuy nhiên có lẽ có một vài nét trong vũ trụ quan của Einstein có thể diễn đạt bằng ngôn ngữ thông thường mà chỉ cần đến ngôn ngữ số hệ của toán học. Đây thật là một thứ thế giới kỳ ảo, làm đảo lộn những tư tưởng bắt rễ từ bao thế kỷ nay, “một món hổ lốn lạ lùng rất khó tiêu hóa đối với nhiều người”. Einstein bắt chúng ta tin những điều khó tin thí dụ như: không gian hình cong, đường ngắn nhất nối liền hai điểm không phải là đường thẳng, vũ trụ có hạn nhưng không có biên giới, hai đường song song cuối cùng sẽ gặp nhau, tia sáng đi theo đường vòng cung, thời gian có tính chất tương đối và mỗi nơi phải do một cách, phải đo chiều dài tùy theo tốc độ, vũ trụ không phải hình cầu mà là hình trụ, một vật thể chuyển động thì kích thước co lại, nhưng khối lượng lại tăng lên, thời gian là chiều thứ tư thêm vào ba chiều cao, dài và rộng… Những đóng góp của Einstein cho khoa học nhiều không kể xiết, nhưng trước hết phải kể đến thuyết tương đối mà theo lời Banesh Hoffman “có một tính chất vĩ đại để đặt Einstein ngang hàng với những nhà khoa học lớn nhất của mọi thời đại như Isaac Newton và Archimède . Những nghịch lý mê hoặc và những thành công rực rỡ đã kích động mãnh liệt trí tưởng tượng của mọi người”. Cuộc cách mạng của Einstein bắt đầu vào năm 1905, tức là năm tờ Chuyên san vật lý học ở Đức Annalen der Physik đăng một bài báo dài chừng 30 trang với cái nhan đề tầm thường là Động điện của những vật thể chuyển động. Năm đó Einstein mới 26 tuổi và là một viên chức bình thường trong cơ quan cấp bằng sáng chế ở Thụy Sĩ. Einstein sinh trong một gia đình Do thái trung lưu ở Ulm, Bavaria năm 1879. Khi còn nhỏ không có biểu hiện nào chứng tỏ ông là “thần đồng”, ngoại trừ năng khiếu toán học. Vì hoàn cảnh gia đình, nên năm 15 tuổi, Einstein phải tự lập. Sau này di cư sang Thụy Sĩ, Einstein theo học khoa học tại trường đại học bách khoa Zurich, thành hôn với một bạn sinh viên và trở thành công dân Thụy Sĩ. Không thực hiện được giấc mộng làm giáo sư đại học để kiếm sống, Einstein đành chấp nhận làm công chức, có nhiệm vụ thảo báo cáo và viết lại đơn từ của các nhà sáng chế gửi cho cơ quan cấp bằng sáng chế. Thời giờ rảnh, Einstein nghiên cứu rộng rãi tác phẩm của các nhà triết học, khoa học và toán học. Chẳng bao lâu sau ông đã chuẩn bị đầy đủ để tung ra một loạt những đóng góp mới cho khoa học, những đóng góp sẽ có tiếng vang rộng lớn sau này. Trong tác phẩm năm 1905, Einstein tung ra “Thuyết Tương đối đặc biệt” làm rung chuyển quan niệm chung về không gian, thời gian, vật chất và năng lượng . Toàn bộ thuyết tương đối này dựa vào hai giả thuyết cốt yếu. Giả thuyết thứ nhất là: mọi sự chuyển động đều có tính chất tương đối. Để có một ý niệm cụ thể về nguyên tắc này, người ta thường hay lấy ví dụ người ngồi trong toa xe hỏa đang chạy. Nếu tất cả các cửa đều đóng kín, tối như bưng thì mọi người ngồi trên xe không có ý thức gì về tốc độ và phương hướng, thậm chí có lẽ không biết cả xe đang chạy nữa. Một người đi tàu thủy, nếu các cửa đóng kín, cũng ở trong tình trạng tương tự. Chúng ta nhận thức được sự chuyển động là qua sự tương đối với các vật khác. Ngay cả trái đất quay chúng ta cũng không nhận thấy, nếu không có những tinh cầu khác để so sánh. Giả thuyết trụ cột thứ hai của Einstein là: Tốc độ của ánh sáng không bị lệ thuộc vào sự chuyển động của nguồn sáng . Tốc độ của tia sáng bao giờ cũng là 186.000 dặm một giây đồng hồ (xấp xỉ 300.000km/giây),bất kỳ ở nơi nào. Tia sáng xuyên qua trong toa xe hỏa đang chạy cũng có tốc độ ngang với tốc độ tia sáng chạy ở ngoài toa xe. Không có mãnh lực nào vượt được tốc độ của ánh sáng, chỉ tốc độ hạt điện tử mới suýt soát được với tốc độ của ánh sáng. Như vậy ánh sáng là thực thể độc nhất trong vũ trụ không bao giờ biến đổi. Cuộc thí nghiệm nổi tiếng do hai nhà khoa học Mỹ Michelson và Morley thực hiện vào năm 1887 đã tạo cơ sở cho thuyết của Einstein về ánh sáng. Để đo tốc độ của ánh sáng cho đúng một cách tuyệt đối, hai nhà khoa học kia đã chế ra một hệ thống máy móc như sau: Hai đường ống, mỗi đường ống dài chừng một dặm được đặt thẳng góc với nhau. Đường ống thứ nhất đặt theo cùng chiều với chiều trái đất quanh chung quanh mặt trời, đường ống thứ hai hướng ngược lại với chiều quay của trái đất. Ở đầu mỗi một đường ống đặt một tấm gương cùng một lúc chiếu vào cả hai đường ống một chùm ánh sáng. Thời đó người ta tin rằng chỗ nào trống không, là có khí éther, và nếu thuyết này đúng thì một tia sáng sẽ chạy theo đường ống như người ta bơi ngược chiều, và một tia sáng khác sẽ chạy theo đường ống như người ta bơi xuôi chiều. Nhưng sau cuộc thí nghiệm, mọi người đều ngạc nhiên thấy rằng cả hai chùm tia sáng cùng dội ngược lại vào đúng một lúc như nhau. Thí nghiệm đó bị coi là một thất bại. Thuyết của Einstein tung ra năm 1905 để trả lời những thắc mắc của Michelson, Morley và các nhà vật lý học khác. Trong các khoảng trống không có khí éther và cuộc thí nghiệm với hai đường ống đã đo rất đúng tốc độ của ánh sáng. Căn cứ vào thí nghiệm này, Einstein suy ra điều vô cùng quan trọng là tốc độ của ánh sáng không bao giờ thay đổi bất kể đo dưới điều kiện nào, và sự chuyển động của trái đất quay chung quanh mặt trời cũng không ảnh hưởng gì đến tốc độ của ánh sáng. Trái với Newton, Einstein khẳng định rằng không làm gì có sự chuyển động tuyệt đối. Quan niệm có vật thể chuyển động một cách tuyệt đối trong không gian là điều vô lý. Sự chuyển động của vật thể chỉ là tương đối với sự chuyển dộng của vật thể khác. Trạng thái của mọi vật thể là chuyển động ở trên mặt đất và khắp mọi nơi trong vũ trụ, không có vật thể nào là tuyệt đối đứng yên. Trong vũ trụ động, từ vật thể nhỏ như nguyên tử đến những dải thiên hà bao la, sự chuyển động là trạng thái vĩnh hằng. Trái đất quay chung quanh mặt trời với tốc độ 20 dặm/giây đồng hồ. Trong vũ trụ tất cả đều chuyển động, và không có thứ gì đứng im một chỗ, thì làm gì có tiêu chuẩn để đo tốc độ, chiều dài, kích thước, khối lượng và thời gian, ngoại trừ đo với sự chuyển động tương đối. Chỉ có ánh sáng là tuyệt đối, vì tốc độ của ánh sáng lúc nào cũng là 186.000dặm/giây đồng hồ, bất kể nguồn sáng, bất kể vị trí quan sát, đúng như cuộc thí nghiệm Michelson – Morley đã chứng tỏ. Trong số những quan niệm của Einstein về vũ trụ, quan niệm về sự tương đối của thời gian đi ngược với quan niệm xưa nay, và khó hiểu hơn cả. Einstein chủ trương rằng: những biến cố xảy ra ở nhiều nơi khác nhau có thể xảy ra cùng một lúc đối với kẻ này, nhưng xảy ra khác lúc đối với kẻ khác ở một vị trí chuyển động tương đối với người trước. Thí dụ hai biến cố xảy ra cùng một lúc đối với người quan sát đứng trên mặt đất, có thể xảy ra khác lúc đối với người ngồi trên xe hỏa hay máy bay. Thời gian không tuyệt đối, mà là tương đối với vị trí và tốc độ của người quan sát. Áp dụng thuyết này để nhận định vũ trụ, người ta thấy rằng một biến cố, thí dụ một vụ nổ xảy ra không một lúc đối với người quan sát ở ngay trên tinh cầu đó và người quan sát ở trên trái đất. Một biến cố diễn ra trên một tinh cầu xa lắc có thể hàng năm mới chuyển hình ảnh tới mặt đất, mặc dầu ánh sáng chạy với tốc độ 186.000 dặm/giây đồng hồ. Vì tinh tú ta quan sát thấy hôm nay chỉ là vì tinh tú của bao nhiêu năm về trước, và có thể lúc này vì tinh tú ấy đã không còn. Theo thuyết tương đối của Einstein thì người ta có thể đuổi kịp quá khứ và sinh ra ở tương lai nếu người ta có tốc độ vượt tốc độ ánh sáng. Mỗi tinh cầu chuyển động có một hệ thống thời gian riêng, khác hẳn hệ thống thời gian ở mọi tinh cầu khác. Một ngày trên trái đất chỉ là thời gian đủ để trái đất quay một vòng trên trục của nó. Sao Mộc mất nhiều thời giờ hơn trái đất để quay chung quanh mặt trời, vì vậy một năm trên sao Mộc dài hơn một năm trên trái đất. Tốc độ càng nhanh, thời gian càng chậm. Chúng ta đều quen chỉ nghĩ rằng mọi vật thể đều có ba chiều, nhưng Einstein chủ trương thời gian cũng là một chiều của không gian. Thời gian và không gian không thể tách rời nhau. Mọi vật luôn luôn chuyển động, cho nên theo quan niệm của Einstein, chúng ta sống trong một vũ trụ bốn chiều mà thời gian là chiều thứ tư. Nói tóm lại, tiền đề cơ bản của thuyết Einstein trình bày lần đầu tiên nửa thế kỷ trước đây là tính tương đối của mọi chuyển động, và tính tuyệt đối độc nhất của ánh sáng. Triển khai nguyên lý tương đối của mọi sự chuyển động, Einstein còn làm sụp đổ một quan niệm khác vốn vững chắc từ xa xưa. Từ trước người ta vẫn tin rằng chiều dài và khối lượng trong mọi trường hợp có thể quan niệm được vẫn là tuyệt đối và không thể thay đổi. Bây giờ Einstein khẳng định khối lượng hay trọng lượng cùng chiều dài của một vật thể thay đổi tùy theo tốc độ của vật thể đó . Einstein đưa ra thí dụ: một đoàn xe lửa dài một ngàn bộ (Bộ: 0,304 mét) chạy với tốc độ bốn phần năm tốc độ của ánh sáng. Đối với người đứng yên một chỗ thì đoàn tàu chạy chỉ còn dài 600 bộ, những đối với người ngồi trên thì đoàn tàu vẫn dài đủ 1000 bộ. Tương tự như đoàn tàu, mọi vật thể chuyển động trong không gian cũng đều co ngắn lại tùy theo tốc độ. Một chiếc gậy dài 100 mã (mã (inch) = 0,025 mét),nếu phóng lên không gian với tốc độ 161.000 dặm/giây đồng hồ, sẽ co ngắn lại chỉ còn dài nửa mã. Trái đất thì quay trục nên chu vi cũng co rút lại chừng sáu phân mét. Khối lượng cũng có thể thay đổi. Tốc độ càng nhanh thì khối lượng của vật thể càng tăng. Nhiều cuộc thí nghiệm đã chứng tỏ rằng vật thể bắn lên không gian với tốc độ lên tới 86% tốc độ ánh sáng, sẽ cân nặng gấp đôi so với khi còn nằm yên dưới đất. Sự kiện này có hậu quả quan trọng trong công cuộc phát triển nguyên tử sau này. Thuyết tương đối của Einstein trình bày năm 1905 được coi là “Lý thuyết hạn chế về tính tương đối” vì chỉ áp dụng riêng đối với sự chuyển động . Tuy nhiên, trong vũ trụ chúng ta, hành tinh và các thiên thể rất ít khi chuyển động đều theo đường thẳng. Một lý thuyết phải bao gồm được mọi thứ chuyển động, mới đủ để mô tả vũ trụ. Vì lẽ đó, Einstein đã phải dành mười năm để xây dựng “Lý thuyết Tổng quát về tính tương đối”, trong đó ông nghiên cứu sức mạnh huyền bí đã hướng dẫn sự chuyển động của các hành tinh, định tinh, sao chổi, thiên thạch, thiên hà và những vật thể khác quay cuồng trong khoảng không của vũ trụ bao la. Trong “lý thuyết tổng quát về tính tương đối” công bố năm 1915, Einstein đề ra một quan niệm mới về sức hút, đảo lộn hẳn những quan điểm về trọng lực và ánh sáng đã được người ta chấp nhận từ thời Isaac Newton. Newton cho trọng lực là một lực, nhưng khác với Newton, Einstein chứng minh rằng khoảng không gian chung quanh một hành tinh hay một thiên thể, là một trường hấp dẫn tương tự như từ trường chung quanh đá nam châm. Những vật thể lớn như mặt trời, các vì tinh tú đều tỏa ra chung quanh một trường hấp dẫn rất rộng. Trái đất và mặt trăng hút nhau là vì vậy. Thuyết trường hấp dẫn còn giải thích những chuyển động không bình thường của sao Kim, một hành tinh gần mặt trời nhất, những chuyển động là nát óc những nhà thiên văn học tờ bao thế kỷ nay và là một trường hợp ngoại lệ, không tuân theo định luật về sức hút của Newton. Trường hấp dẫn các tinh tú có sức cực mạnh có thể bẻ cong tia sáng. Vào năm 1919, tức là mấy năm sau khi thuyết tổng quát về tính tương đối được tung ra, những bức ảnh chụp được trong một vụ nhật thực đã xác nhận thuyết của Einstein là đúng: các tia sáng đi theo đường cong chứ không phải đường thẳng, do bị tác động trường hấp dẫn của mặt trời. Từ tiền đề đó, Einstein suy ra rằng: không gian hình cong. Chịu ảnh hưởng của mặt trời, các hành tinh quay theo những đường nào ngắn nhất, tương tự như con sông khi chảy ra biển, tùy theo địa hình mà chảy theo những đường tự nhiên nhất, dễ chảy nhất . Trong phạm vi trái đất, một con tàu hay một chuyến phi cơ vượt biển, đi theo không phải đường thẳng mà là đường cong nghĩa là cung của một vòng tròn. Hiển nhiên là đường gần nhất giữa hai điểm không phải đường thẳng mà là đường cong. Định luật này còn đúng cả với sự chuyển động của hành tinh hay tia sáng. Nếu chấp nhận thuyết không gian có hình cong, phải đương nhiên chấp nhận thuyết không gian hữu hạn. Ví dụ, một tia sáng xuất phát ở một vì sao, sau hàng triệu năm ra đi, vẫn sẽ trở về nguồn sáng cũ, chẳng khác gì nhà du lịch đi một chuyến vòng quanh thế giới. Vũ trụ không phải là diễn ra bất tận trong không gian, mà có những giới hạn tuy không thể xác định được những giới hạn này. Trong số những khám phá vĩ đại của Einstein về khoa học, đóng góp của ông cho công cuộc nghiên cứu về nguyên tử là có tác dụng trực tiếp và sâu rộng nhất đối với thế giới ngày nay. Ít lâu sau khi tờ chuyên san vật lý học tung ra thuyết tương đối vào năm 1905, Einstein còn cho đăng ở báo này một bài báo ngắn có tầm vang dội rất lớn, nhan đề là “Quán tính của một vật thể có tùy thuộc vào năng lượng của vật thể đó không?”. Einstein xác định rằng: ít ra là trên lý thuyết năng lượng nguyên tử có thể sử dụng được. Sức mạnh khủng khiếp của nguyên tử có thể được giải tỏa theo một phương trình do Einstein đề ra: E = mc2, nghĩa là: năng lượng bằng khối lượng nhân với tốc độ của ánh sáng, rồi lại nhân với tốc độ của ánh sáng lần nữa. Nói một cách cụ thể, Einstein cho rằng: trong nửa cân Anh (cân Anh = 453,592 gam) của bất kỳ chất gì đều chứa một năng lượng tương đương với sức mạnh của bảy triệu tấn thuốc nổ TNT. Một nhà bình luận đã nhận xét: nếu không có phương trình của Einstein “các nhà khoa học vẫn có thể mò mẫm tách được nguyên tử uranium, nhưng không chắc các nhà khoa học đó đã hiểu đây là một nguồn năng lượng khủng khiếp, vật liệu của những trái bom khủng khiếp”. Trong phương trình nổi tiếng E = mc2, Einstein đã chứng minh năng lượng và khối lượng chỉ là một, ở hai trạng thái khác nhau và khối lượng chính là năng lượng đặc lại. Barnett đã nhận định rất đúng là phương trình E = mc2 “đã giải thích được rất nhiều điểm về vật lý học, từ bao lâu nay vẫn còn là những điểm bí mật. Phương trình đã giải thích tại sao chất quang tuyến phản xạ như radium và uranium lại có thể liên tiếp trong hàng triệu năm bắn ra những tia li ti chạy với tốc độ khủng khiếp. Phương trình còn giải thích tại sao mặt trời và các vì tinh tú lại có thể tuôn ánh sáng và sức nóng trong hàng tỷ tỷ năm, vì nếu mặt trời chỉ có lửa theo lối thông thường thì trái đất của chúng ta đã phải chết trong tối tăm u lạnh từ hàng triệu năm rồi. Phương trình còn cho chúng ta thấy năng lượng ghê gớm chứa chất trong nhân nguyên tử và tiên đoán chỉ cần một lượng rất nhỏ chất uranium cũng đủ tạo ra một trái bom có sức công phá cả một thành phố”. Cho mãi đến năm 1939 phương trình của Einstein vẫn còn là lý thuyết. Vào năm đó, sau khi bị Đức quốc xã trục xuất khỏi châu u, Einstein sang Mỹ rồi ít lâu sau ông nhập quốc tịch Mỹ. Einstein được tin Đức quốc xã đang lùng để nhập cảng uranium và đang nghiên cứu về bom nguyên tử, ông liền viết cho Tổng thống Roosevelt một bức thư tối mật: “Những công cuộc nghiên cứu mới đây của E. Fermi và Lzilard mà bản thảo đã được gửi tới tôi, khiến tôi nghĩ rằng trong tương lai rất gần, chất uranium có thể biến thành một nguồn năng lượng mới mẻ và quan trọng… Hiện tượng mới này có thể dẫn tới việc chế tạo bom, và có thể tin rằng… chỉ một trái bom loại đó, mang dưới tàu và cho nổ ở hải cảng có thể tàn phá toàn thể hải cảng và các vùng phụ cận”. Kết quả tức khắc của bức thư Einstein gửi cho Roosevelt là việc khởi công xây dựng đề án bom nguyên tử Manhattan. Năm năm sau, trai bom nguyên tử đầu tiên được đưa ra thử ở Almagordo Reservation thuộc bang New Mexico, và ít lâu sau Mỹ thả bom nguyên tử tàn phá Hiroshima, để sớm kết liễu chiến tranh với Nhật Bản. Bom nguyên tử là một trong những kết quả thực tế vang dội nhất của lý thuyết Einstein. Tuy nhiên người ta vẫn còn phải kể đến thực tế khác nữa. Năm 1905, năm thuyết tương đối ra đời, các nhà khoa học triển khai định luật về điện ảnh học (Photoelectric Law) của Einstein, để giải thích những tác động điện ảnh huyền bí và do đó mở đường cho vô tuyến truyền hình, phim có tiếng nói, “con mắt thần” cùng những áp dụng khác. Chính vì phát minh này mà Einstein được tặng giải Nobel về vật lý năm 1922. Trong những năm cuối đời, Einstein vẫn không ngừng nỗ lực xây dựng lý thuyết về Trường thống nhất (Unfided Field Theory) nhằm chứng minh tính chất hòa hợp và đồng nhất của tạo vật. Theo Einstein, các định luật vật lý học chi phối nguyên tử nhỏ bé cũng có thể áp dụng đối với những vật thể lớn lao trong không gian. Do đó lý thuyết về Trường thống nhất của Einstein giải thích được mọi hiện tượng vật lý theo một khuôn mẫu cố định. Lực hút, điện lực, từ lực và nguyên tử lực tất cả đều là những lực có thể giải thích được bằng một lý thuyết duy nhất. Năm 1950, sau gần nửa đời nghiên cứu, Einstein lần đầu tiên trình bày lý thuyết Trường thống nhất của ông trước thế giới. Ông ngỏ ý tin rằng thuyết này nắm giữ được chìa khóa của vũ trụ, thống nhất trong một quan niệm, từ thế giới cực nhỏ và quay cuồng của nguyên tử đến không gian mênh mông của các thiên thể. Vì những khó khăn về toán học nên thuyết của Einstein vẫn chưa được những sự kiện vật lý học kiểm chứng toàn bộ. Tuy vậy Einstein vẫn vững tin rằng lý thuyết về Trường thống nhất của ông giải thích được “tính chất nguyên tử của năng lượng” và chứng minh được sự hiện hữu của một vũ trụ có sắp đặt rất trật tự. Tư tưởng triết lý đã gây cảm hứng và hướng dẫn Einstein qua bao nhiêu năm nỗ lực, và những phần thưởng cho những nỗ lực đó, đã được Einstein trình bày trong bài giảng về nguồn gốc Lý thuyết tổng quát về tương đối tại trường đại học Glasgow năm 1933. “Kết quả cuối cùng rất giản dị, bất kỳ một sinh viên thông minh nào cũng có thể hiểu được một cách dễ dàng. Nhưng chỉ có thể hiểu được sau khi trải qua những năm âm thầm tìm kiếm một sự thật mà người ta chỉ cảm thấy chứ không thể nói lên được. Người ta chỉ có thể hiểu được điều đó khi lòng ham muốn lên đến mức cuồng nhiệt, và khi đã trải qua những giai đoạn tin tưởng rồi nghi ngờ, nghi ngờ rồi tin tưởng cho tới một lúc nào đó, bừng hiểu rõ được sự thật sáng sủa”. Trong một dịp khác, Einstein đã bộc lộ cá tính tinh thần của ông: “Cảm xúc đẹp nhất và sâu xa của con người là cảm xúc trước sự huyền bí. Chính cảm xúc này đã khiến cho khoa học chân chính nảy nở. Những ai không còn có những cảm xúc đó, không còn biết ngạc nhiên và chỉ biết đứng ngẩn người ra vì sợ hãi thì sống cũng như chết. Cảm thấy điều huyền bí mà con người không sao giải thích nổi, là vì nó chỉ biểu lộ ra khi mà khả năng ít ỏi đáng buồn của chúng ta chỉ hiểu được những hình thức thấp kém của cái quy luật cao siêu dưới vẻ đẹp rạng rỡ hơn hết. Chính sự biết đó và cảm xúc đó đã là nền tảng đích thực của tôn giáo”. Con số nhà khoa học tán dương Einstein không kể xiết. Chúng ta hãy đọc hai tác phẩm đã viết về Einstein, để hiểu địa vị độc nhất của ông trong giới khoa học. Paul Oehser viết: “Đối với Albert Einstein, người ta không thể không nói đến ảnh hưởng. Phải gọi những lý thuyết của ông là cách mạng vì đã mở ra kỷ nguyên nguyên tử. Kỷ nguyên này đưa nhân loại đi đến đâu chúng ta chưa thể biết. Hiện nay chúng ta chỉ biết rằng Einstein là nhà khoa học, nhà triết học vĩ đại nhất của thế kỷ. Trước mắt chúng ta, Einstein có dáng dấp một vị thánh và những công trình của ông đã khiến chúng ta thêm tin tưởng vào khả năng trí tuệ của con người. Ông còn là hình ảnh bất diệt của con người luôn luôn tìm hiểu”. Nhà khoa học Banesh Hoffman đã kết luận như sau: “Einstein vĩ đại không hẳn chỉ vì những tư tưởng khoa học mà còn vì tác dụng tâm lý. Trong một giai đoạn nghiêm trọng của lịch sử khoa học, Einstein đã chứng minh rằng, những tư tưởng xưa không hẳn đã là thiêng liêng bất di bất dịch. Chính sự chứng minh đó đã mở đường cho trí tưởng tưởng của những người như Bohr và Broglie khiến họ có thể thành công trong địa hạt lượng tử. Toàn thể khoa vật lý học của thế kỷ 20 đều mang dấu ấn không thể xóa nhoà của thiên tài Einstein”.
Website đọc truyện online chất lượng hàng đầu việt nam, với nhiều truyện tiên hiệp, truyện kiếm hiệp, truyện ngôn tình, truyện teen, truyện đô thị được tác giả và dịch giả chọn lọc và đăng tải. Liên hệ về bản quyền/quảng cáo: [email protected]